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ABSTRACT

The motivation for this study lies in the significance of free surface suction

effects during submarine operations at periscope depth. Such operations become

increasingly important as new roles for the Navy in littoral waters are emerging.

Particular emphasis is placed on computation of steady state forces on the body as

a function of speed, depth, and wave frequency and direction. These forces

constitute an important and very frequently limiting factor in establishing the

periscope depth submerged operating envelope. Solution of the problem is

accomplished by singularity distribution on the actual surface of the body and

discretization in the form of plane quadrilateral elements. Parametric studies are

conducted in order to assess the effects of body shape and size. The results of this

thesis can be directly utilized in the simulation based design process as well as

during training. -... :...-
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1. INTRODUCTION

Submarine missions are rapidly evolving into frequent

deployments to littoral areas, which require operating in

shallow water. Shallow water is usually defined as a charted

depth of less than 600 feet, but can be as shallow as 180 feet

or less in certain situations. Shallow water operations

sharply contrast with the traditional, blue water missions of

the Cold War. Instead of concentrating on anti-submarine

warfare (ASW) against modern Soviet platforms, submarines will

execute ASW against older, diesel submarines operating in

littoral areas. Also, surveillance (both visual and

electronic ) operations, mine laying evolutions, and joint

special forces' expeditions will become routine occurrences as

the submarine force responds to dynamic regional conflicts.

Given the abundant time submarines will spend operating in

shallow water, the importance of periscope depth operations

greatly expands. Periscope depth is the depth at which a

submarine interacts with the outside world. It has a

periscope exposed along with one or more multi-purpose masts.

During routine operations, a submarine is at periscope depth

to conduct communications (receive and transmit), to establish

navigational fixes, to perform housekeeping, and to ventilate

the submarine atmosphere. During operations in shallow

waters, the time spent at periscope depth will greatly
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increase and may be the only depth the submarine is able to

operate. As a result, the hydrodynamic influences on the

submarine at periscope depth are of special interest.

This work primarily examines the free surface effects on

submerged bodies similar to submarine hulls. As a submerged

body travels through the water, it generates waves which

interact with the free surface. This, in turn, produces

forces and moments on the body. A longitudinal force, drag,

opposes the body's motion, while a normal force, lift, pushes

the body to the surface. Additionally, a moment is produced

on the body which causes the body either to pitch up or down.

Of these three effects, lift is the most important, since it's

desirable to keep the body from breaking the free surface

(broaching). Broaching hazards the submarine by making it

much more susceptible to detection from air, sea or land

sources. It is also desirable to minimize the moment in order

that the stern (propeller) not break the free surface. A

propeller out of the water greatly reduces the submarine's

speed, making depth control much more difficult and also

increases the submarine's detectability. Prior to proceeding

to periscope depth, a submarine crew will adjust its trim by

taking on additional weight (seawater) into forward, aft or

auxiliary (middle) ballast tanks. This ballast will help

counteract the upwards, sea-suction lift force encountered

when operating near the free surface. However, taking on too

much ballast makes it difficult to reach periscope depth and
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could cause the submarine to lose depth control (sink out)

once periscope depth is reached. Once at periscope depth, the

ordered depth is maintained using a combination of speed,

control surfaces (bow/fairwater planes, stern planes, and

rudder) and variable ballast. These are used to prevent

broaching and to keep the propeller submerged.

In addition to the waves the submerged body produces, the

existing seas greatly effect the operation of the body near

the surface. A submarine can easily maintain depth in calm

seas, but in the presence of high sea states, depth control is

much more difficult. The submarine pitches and rolls in the

presence of sea waves and this reduces the crew's ability to

keep the submarine submerged. The resulting drag, lift and

moment from the incident waves are presented in this work.

The results from the wave making and the incident wave

problems can be linearly combined to produce a total effect on

the submerged body.

On the practical side, the results of this work can be

utilized in the simulation based design process as well as

during training in submarine simulators. Additionally, they

could be incorporated into future automatic depth control

system designs. Also, incorporation into the existing SFMPL

(Ship's Fleet Mission Program Library) would allow a submarine

crew to make accurate predictions of the ballast required at

periscope depth. The wave making and incident wave results

are linearly added to the forces and moments produced by other

3



significant effects such as added mass from the body's

acceleration, frictional resistance due to viscosity, and eddy

resistance from appendages, to create a combined total force

and moment acting on the body. The addition of these two

effects due to operation near the free surface will greatly

enhance the accuracy and realism of the simulators and improve

future submarine designs.

For this work, the Defense Advanced Research Projects

Agency (DARPA) SUBOFF model (DTRC Model 5470) (Roddy,1990) is

utilized to provide the submerged hull shape into the computer

program. The FORTRAN program written by Doctors and Beck

calculates the drag, lift and moment coefficients for a given

set of input conditions. For the wave making or Neumann-

Kelvin problem, the free surface flow created by a moving

submerged body is solved for (Doctors & Beck,1987). The

program yields a solution to this problem, in which the fluid

is inviscid and exact body boundary conditions (no normal

velocity on the body surface) are satisfied. The sea surface

condition is linearized, rather than being met exactly. The

SUBOFF model is discretized into panels of constant source

strengths using the method of Hess and Smith (Hess &

Smith,1964 and Parsons,1984). The source strengths are then

solved for such that the body boundary condition is satisfied.

For the incident wave problem, the program uses a given

expression for the pressure distribution, applies it to each
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discrete hull panel and then sums the resulting forces and

moment. This is examined for various depths, body speeds and

wave directions.

In this work, the two problems are initially formulated in

Chapter II. The inviscid flow theory development and an

explanation of the boundary conditions explain the theoretical

background needed to understand the wave making problem

(Doctors & Beck,1987 and Papoulias,1993 and Papoulias &

Beck,1988 and Reed & Beck & Griffin & Peltzer,1990). The

incident wave problem is next set forth (Papoulias,1993)

followed by a brief discussion on the numerical solution

techniques. Chapter III presents the results. After

determining the number of integration points needed for

convergence, the results of the wave making and incident wave

problems are presented. The wave making runs show the drag,

lift and moment as a function of both speed and depth. The

incident wave runs show these three parameters as a function

of depth, body speed and wave direction for various

wavelengths. After exploring the wave making and incident wave

problems, Chapter IV presents a parametric study of submarine

hull shapes. The submarine hull is described by three

sections, a cylindrical parallel midbody with a parabola of

revolution bow (entrance) and an ellipsoid of revolution stern

(run) (Jackson,1992). The shape of the entrance and run can

be varied by changing coefficients in the mathematical

expression for each. Two effects are examined. In the first,
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the displacement and the diameter are fixed and the length is

varied. In the second case, the displacement and the length

remain constant and the diameter is changed. In both cases,

the drag, lift and moment are investigated for both the wave

making and incident wave cases. These parametric studies have

direct application in the design process of future classes of

submarines. For a given set of requirements, the effect on

lift and moment can be explored to provide an optimum solution

to periscope depth operations. Thus, this work increases the

understanding of near surface effects on a submerged

submarine.
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I1. PROBLEM FORMULATION

A. INTRODUCTION

In the development of the free surface effects on

submerged bodies, the forces and moments acting on the

submerged body must calculated. The forces include the drag

(force parallel to the body), the lift (force normal to the

body) and the bow-up moment. These hydrodynamic forces acting

on the submerged body arise from a modification to the

pressure distribution summed around the surface area of the

body in question. Forces can arise from relative motion

velocity between the body and the fluid. This relative motion

can be either time varying or time invariant. The approach

utilized here considers only the time invariant cases of the

motion of the body through a stationary fluid or the motion of

the seaway relative to the body. Thus, the inertia forces

from an accelerating body or from time varying seaways are

neglected. This assumption simplifies the problem and is a

first step towards a comprehensive modelling of a submarine at

periscope depth.

In examining the combined effects of the relative motion

between the body and the fluid, the system is considered to be

a linear system and thus the principle of superposition

applies. Separate effects can be examined independently and

7



the results summed together. This work considers two separate

effects. The first, the wave making problem, is the motion of

the body relative to a stationary fluid, resulting in forces

and moments being generated on the body. The free surface is

assumed to be an otherwise calm sea. Any modification in the

free surface shape (waves) is due to the influence of the body

itself. The second consideration is the effects of an

existing seaway on the body or the incident wave problem.

These two effects can then be summed together to yield the

total response of both effects.

The appropriate fluid mechanics tools that are used to

describe sea waves and ship motions are based on potential

flow theory. The first fundamental assumption of ideal

(potential) flow theory is that mass is preserved. If we

consider a control volume surrounding the fluid and bodies of

interest, what mass enters the volume either accumulates

inside or leaves the control volume. This can be expressed

mathematically by utilizing the divergence theorem: Given a

closed surface area S with a unit vector E pointing inward,

and volume V enclosed by S, then for any single valued and

differentiable vector function A,
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If we denote the unit vector,

B = xl +nyjI + _.k(2)

then,

A" - = Axnx + Ayy + An_. (3)

which is the component of A in the direction of ft. If we

denote the operator,

S1+ - 3 + a k (4)

then the dot product,

Vx=Ax + My + aAz (5)a-x A-y- -av

Conservation of mass then requires,

aJ pdV =fJ{p[T2EdS ,(6)

where the right hand side represents the net mass flow in, and

the left hand side the increase of mass in V. Applying the

divergence theorem, we get,

A fffvpJ V- -fffv. (p)dV (7)
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and, since V is an arbitrary volume,

ap +V.(pU - o (8)

If we assume that the density p is constant, a good

assumption in naval hydrodynamics, we get,

V. * =o 0 (9)

If the velocity vector U is,

=u I+ v3 + w.f (10)

we get the final form of the continuity equation,

au 8v aw = 0 (11)

inside the control volume V.

The next very important, and not so obvious, assumption is

that the flow is irrotational (flow without rotation). One

important property of irrotational flows is that the

circulation around any closed curve c is zero,

f U-d = 0. (12)

This means that this line integral will be independent of the

path of integration, which can only be achieved if dl'f is an

10



exact differential of some function *,
d•-dff-f .(13)

If we denote the position vector,

dy = Idx + 3dy + Tdz (14)

we get,

dg. U = udx + vdy + wdz = d . (15)

Since the form of the total differential is,

do = a' dx + 8ady + 8a'dz (16)

we get,

U = a = O•x , v = ao = = , (17)

or, in vector form,

U= V¢ , (18)

which is the definition of the velocity potential. This is a

very useful quantity since instead of computing the fluid

velocity which is a vector function, U, all we have to do is

compute the scalar velocity potential 4, and then we can get
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the components of U by differentiation. Using 0, we can write

the continuity equation as follows,

V-v= 0o-eV.V = 0 (19)

or,

__A + _2, 'or +° (20)
ax 2  ay 2  az 2

which is Laplace's equation.

This is the equation we have to solve, subject to

appropriate boundary conditions, to compute the flow field of

an ideal flow. Once we compute 0 and the velocities, we can

find pressure by using Bernoulli's equation,

P + PO a p + -V4V + pgz=c , (21)

where c is a constant, taken equal to zero in most cases.

This form is similar to the usual form of Bernoulli's

equation, VO-Vo - U2 with the extra term ao/Bt due to the

possible unsteady (always irrotational) nature of the flow.

The pressure p can then be computed from,

1o pV0 . Vo - pgz (22)
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The first two terms represent the hydrodynamic contribution to

the pressure and the third term represents the hydrostatic

contribution. Integration of the pressure distribution then

over the surface of the body will produce forces and moments.

To summarize, the basic features of potential flows are:

1. Mass is conserved and fluid density is constant. This

results in,

v. =0 , (23)

the continuity equation.

2. The flow is irrotational, which means we can define the

velocity potential,

F7 = V(24)

which satisfies Laplace's equation,

Oxx= + Oy + ozz- = 0 (25)

3. For unsteady, irrotational flows, we can use Bernoulli's

equation,

pP 8  + pVo . VO + pgz = 0 (26)
Wt 2

This comes from Newton's law, and as such it is relative to an

inertial coordinate system. It is noted here that throughout

13



the remainder of this work, partial derivatives will be

designated by a subscript vice the 8/8x notation (i.e., Ox

vice 8W/8x).

Wave effects on the free surface are important effects to

consider on a submerged body. The most common and important

wave phenomena are free surface waves that exhibit typical

periods of a few seconds. Other waves like subsurface or

internal waves are found in regions of density stratification

beneath the free surface and are typically of lower frequency

with periods on the order of several minutes. The influence

of such waves on submerged bodies is generally negligible

unless the body has an unusually low frequency resonance. The

simplest free surface wave formation is the plane progressive

wave system. This motion is two dimensional, sinusoidal in

time with angular frequency, w, and propagates with phase

velocity, cp, such that to an observer moving with this

velocity the wave appears to be stationary. The waves could

also be modelled as a series of random waves, where random

refers to the character of the wave height distribution.

These can be represented using a probabilistic approach. This

work, however, views the waves as plane progressive waves of

small amplitude, with sinusoidal time dependence. Effects of

changing depth, varying wave period (and frequency) and

altering wave direction are explored. Additionally, the

interaction of the incident waves on the body, known as wave

14



diffraction, is neglected. This is a valid assumption since

the incident wavelengths are the same magnitude as the body

length and significant diffraction is not expected to occur.

B. WAVE XAKING PROBLEM

In the following, a right handed coordinate system is used

with the origin at the projection onto the free-surface of the

intersection of the horizontal centerline and midships. The

positive x-axis points out the bow, the y-axis is positive to

port and the z-axis in position upward. The submerged body is

at a depth H below the undisturbed free surface and of

diameter D at midships. Figure 1 illustrates this.

~--e Stream

I - V
VV

Figure 1: Definition of the Coordinate System
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The total potential for a submerged body advancing with a

constant speed U in an otherwise calm, inviscid and

incompressible fluid is given by

0 (x,y,z) - - Ux + 4(x,y,z) , (27)

where 0 is the free stream potential and 0 is the perturbation

potential due to the motion of the body alone. Assuming 0 is

small relative to Ux, the boundary value problem and its

boundary condition may be rewritten in terms of 4. As such,

Ssatisfies the Laplace's equation

V20 = 0 .(28)

On the free surface, two boundary conditions apply. The

first is the dynamic free-surface condition, which ensures

constant pressure on the free surface. The wave elevation,

S(x,y), may be expanded in a Taylor series about z-0, where

all higher order terms are neglected to obtain

2(4) -l , on z - q (x,y) I

where g is the acceleration due to gravity. The second is the

kinematic free-surface boundary condition, which requires that

there be no flow through the free-surface,

16



XIX + ÷Oyqv- Oz - 0 ,on z =- (x,y) (30)

Rewriting the dynamic, (29), and the kinematic, (30), free-

surface conditions:

+ .÷ {2U2x + (OX)2 + (•y)2 + (,)2} = 0 on z _ 0 '(31)

and

U.x + Oxix + Oyiy - Oz - 0 on z=O - (32)

Neglecting the quadratic terms in both equations, and

differentiating the dynamic free-surface condition with

respect to x and subtracting the result from the kinematic

conditions, gives the linearized free-surface condition:

*xx+ ko0z = 0 on z=0 , (33)

where k 0 . g/U 2 .

The boundary condition on the surface of the body, the

body boundary condition, states that there shall be no flow

through the surface of the body:

0 on f(x,y) - z = 0 (34)

where 8/an denotes the derivative in the direction of the

three dimensional normal vector pointing into the body (!1) and

f(x,y) represents the surface of the body. This body boundary

17



condition can also be written as

S_ R •M_ -- _ fx on f(x,y) - z - 0 .

Vi + (fx)2 + (fy)2  (35)

A fundamental solution of (28) and (33) is the Green

function, given by

G(P,Q) = C _ 1 ÷ •(p,Q) , (36)-r7

where

= koLim fT dO fodk exp{k[z+r+i (x-E)cosO+i (y-,) sin0] }
( ) = -*O k0 - kcos 26 - IpcosG

(37)

where P - (x,y,z) is the field point, Q - (,nr) is a point

source of strength -4w on the body , and

r, rl = [(x-E) 2 + (y-n) 2 + (zF r)2]1/2 . (38)

In this definition, r is the distance between the field point

and the singularity point and r' is the distance between the

field point and the image of the singularity point in the

18



free-surface. The denominator of the integrand in (37)

contains the Rayleigh virtual viscosity A, which is taken to

be small and positive, thus ensuring that the radiation

condition is satisfied. The 1/r terms in (36) represent

source and sink distributions typical in potential flow

problems. The extra term,(37), represents a series of waves

such that the free surface boundary condition (33) is

automatically satisfied, where 0 is the wave direction and k

is the wavenumber. Finally, the radiation condition (i.e.,

all waves far away from the body are outgoing) is satisfied by

taking A to be positive. The only condition that still needs

to be satisfied is the body boundary condition (35).

In the usual method of potential theory, Green's theorem

can be applied to a large volume of fluid containing the body,

and extending to infinity both laterally and in depth. The

following result for the perturbation potential in terms of a

pure source strength, a, is obtained:

0 (P) = -4ffsG(P, Q)a(Q)dS(Q) (39)

where SH is the wetted surface of the body.

An integral equation for the source strength may be found

by differentiating (39) with respect to the normal on the body

and setting it equal to the body boundary condition which

19



requires that the normal velocity on the hull be zero.

Using (27) and (39), we may write

Un. -- - (P,) a (Q) dS(0) (40)

Solution of (40) is achieved by discretizing the surface

of the body into plane quadrilateral panels using the method

of Hess and Smith, as described later. The equations are then

assembled to yield a system of linear algebraic equations in

terms of the unknown source a. This method of solution is

also known as the Neumann-Kelvin method. The flow past a

body moving at a steady speed requires the body boundary

condition be satisfied exactly, while the free-surface

condition is satisfied in a linearized sense.

C. INCIDENT WAVES PROBLEM

A second major effect on a submerged body operating near

the free surface is that of incident waves disturbing the

otherwise calm free surface and interacting with the body. In

the case examined in this work, the waves incident upon the

body are two dimensional plane progressive waves of small

amplitude, with sinusoidal time dependence. The wave motion

is parallel to the x-z plane, with angular frequency w,

propagating with phase velocity cp. The body motions are

assumed to be sufficiently small so that linear theory holds.
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The free surface elevation is of the general form

S(x, t) - Acos (kx -wt) , (41)

where the positive x-axis is chosen to coincide with the

direction of wave propagation. Here A is the wave amplitude,

and the parameter k - w/cp , is the wavenumber, the number of

waves per unit distance along the x-axis. Clearly k - 2T/X ,

where the wavelength X is the distance between successive

points on the wave with the same phase.

The solution of this problem is expressed in terms of a

two dimensional velocity potential (x, z, t) which must satisfy

Laplace's equation

V2 =0 , (42)

and appropriate boundary conditions. Furthermore, 0 must

yield the wave elevation (41) from

.=--I - 0 • (43)

Equation (43) is the so called linearized dynamic boundary

condition on the free surface and is an expression of the

fact, through Bernoulli's equation, that the pressure on the

free surface must be the same as the ambient atmospheric

pressure.
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An appropriate boundary condition on the sea bottom is

OZ - 0 , at z - -h , (44)

i.e., the bottom at depth h is a rigid impermeable plane.

Finally, the free surface boundary condition is

Ott + ÷g~-- 0 , on z - 0 (45)

Equation (45) is a combined dynamic and kinematic free surface

boundary condition. The dynamic condition was mentioned

before, while the kinematic condition simply states

1 = t , OZ(46)

i.e., the vertical velocities of the free surface and fluid

particles are the same. Combining (43) and (46) we arrive at

(45), ignoring the small departures of the free surface n from

the horizontal orientation z - 0.

Clearly the velocity potential 0 must be sinusoidal in the

same sense as (41); therefore we seek a solution of the form

$ (x, z, t) - ?{z(z) e-f,•+i•t )} (47)

Substituting (47) into (42), Z must satisfy the ordinary

differential equation
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ZZ_ - k 2 Z = , (48)

throughout the domain of the fluid. The most general solution

of (48) is given in terms of exponential functions in the form

Z . Cekz + De-kz (49)

Assuming infinite water depth (deep water), the constant D in

(49) must be zero to avoid an unbounded motion deep beneath

the free surface, resulting in

Z = Cekz (50)

Substituting into (47)

o = t. k-ixi (51)

Now substituting (51) into (43) with z = 0, and comparing the

result with (41) we can find

C = igA ,(52)

and

= gAkZekzsin(kx - wt) . (53)
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An additional relation between the wavenumber k and the

frequency w can be obtained by substituting (53) into (45).

This relation, called a dispersion relation is

k = -02 .(54)

The frequency w can be replaced by the wave period T - 2w/w,

just as k can be replaced by the wavelength X - 2w/k.

The phase velocity cp can be determined from the

definition of the wavenumber and (54) to yield

9, .9 (55)

Equation (55) states that surface waves in deep water are

dispersive; longer waves travel faster than shorter waves.

While the wave moves with the phase velocity cp, the fluid

itself moves with a much smaller velocity given by the

gradient of the potential (53). The velocity components (u,w)

of the fluid are

u = x - wAekzcos(kx - wt) , (56)

w = Oz = wAekzsin(kx - wt) . (57)
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Within linear theory, the fluid particles move in small

circular orbits proportional to the wave amplitude; they

remain in the same mean position as the wave propagates

through the fluid with a phase velocity independent of the

wave amplitude. As the depth of submergence beneath the free

surface increases, the fluid velocities (56) and (57) are

attenuated exponentially. For a submergence of half a

wavelength, kz - -1, the exponential factor is reduced to

0.04. Thus, waves in deep water are confined to a relatively

shallow layer near the free surface, with negligible motion

beneath a depth of about O.SX. On this basis one can

anticipate that if the fluid depth is finite, but greater than

half a wavelength, the effects of the bottom will be

negligible.

For a fluid at constant depth h, the boundary condition

(44) is imposed. Returning to the general solution (49), both

exponential functions are retained, with the constants C and

D suitably chosen to satisfy (44). In this case, the velocity

potential (53) becomes

S= gA coshk(z + h) sin(kx - wt) (58)
W coshkh

and the dispersion relation (54) is now

k tanh (kh) (59)
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where we can see that as h - w we get the previous deep water

results. The fluid velocity components can be computed as in

(56) and (57), and for finite depth it follows that

u .x gAkcoshk(z + h)cos(kx -wt) (60)W cosh~kh

w= = gAk sinhk(z + h) sin(kx - wt) (61)
coshkh

In this case the fluid particle trajectories are elliptical,

with the major axis being horizontal.

The phase velocity for finite depth can be expressed in

the form

cpf tanhkh (62)

This tends to the deep water limit (55) for kh l 1. The

opposite limit, where kh 4 1, is the regime of shallow water

waves. In this case (62) can be approximated using the Taylor

series expansion for the hyperbolic tangent, and the leading

order approximation for the phase velocity is

c.o- ,4 1 . (63)
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In the shallow limit, the resulting wave motion is

nondispersive, since the phase velocity depends only on the

depth.

Once the velocity potential is determined we can obtain

the total pressure by substitution into Bernoulli's Equation

(22) which is repeated here

P=-Pot- lpv.v -pgz . (64)
2

Using the deep water expression for the velocity potential

(53) and solving (64) results in

p = -pgAekzcos(kx - cot) - 1pW 2A2e2kz - pgz . (65)
2

The first term in (65) is the time rate of change of the

velocity potential and is neglected in this work since only

time invariant effects are considered. The second term in

(65) is the key element examined in this work. It represents

the time invariant effect on the body and is the major

contributor to the sea-suction forces on the body. The last

term in (65) is the hydrostatic component of the total

pressure and is likewise neglected. As before, the pressure

is integrated over the entire surface to yield the resulting

forces and moments.
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The previous equations of motion are valid for a body with

zero forward speed. If the body possesses a forward speed U,

this can be assumed, within linearity, constant. The only

change in such a case is in the frequency w due to a Doppler

shift effect. If we consider the case of head seas, or waves

from directly ahead, we can assume that both the wave

excitation forces and the resultant oscillatory motions are

linear and harmonic, acting at the frequency of wave encounter

We =eW + w + kU - w + _ U (66)

To account for the more general cases of waves at a direction

0, where 0 - 1800 corresponds to head seas and 0 - 00 to

following seas, the frequency of encounter we becomes

We = w - •2Ucos0 = w - kUcos0 (67)

The frequency of encounter and wave direction are utilized in

this work to determine the incident waves effect on the

submerged body. It should be emphasized that the mean second-

order forces acting on a near surface submarine in a seaway

are due entirely to time-averaged products of first-order

quantities at each separate frequency of monochromatic wave

encounter. In general these mean forces involve quadratic

products of the radiation and diffraction potentials. The

former is usually neglected (Bingham & Korsmeyer &
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Newman, 1994), which corresponds to the case where the

submarine's unsteady motions are neglected.

Thus, the mean second order force can be written as

_) I p dSEV(X÷+0s) "V(O x+0s) * (68)

Here the total diffraction potential (0, + 0s) is for a

steady-state (regular wave) solution at a specified frequency

of encounter, the overbar denotes the time average of one

period, and N is the unit normal to the surface. In this work

we neglect the effects of the scattering potential 0s, and we

consider only the incident waves potential 01. This is a good

approximation for mostly head or following seas. For beam

seas, the potential 0s is expected to play an increasingly

important role. It should be mentioned, however, that

periscope depth operations in beam seas are not very common

due excessive first-order roll motions.

D. NUMERICAL SOLUTION

Once the velocity potential for a distribution of sources

is formulated, the source strengths can be solved for by

satisfying the body boundary condition. There are various

analytical techniques for doing this. This work utilizes

the source panel method developed by Hess and Smith (Hess &

Smith, 1964). Their method is detailed below.
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The velocity potential was derived and given in (39) and

repeated here

0(P) = - fsG(P, Q) a (Q) dS(Q) (69)

where P(x,y,z) is the field or observation point and Q(Q r)

is the distributed source point on the body surface. We must

determine a(Q) to satisfy the body boundary condition on SH.

The surface is represented as a finite number of elements each

having a(Q) constant so that the source strength can be

brought outside of the integral. The integral then depends

only on the geometry of the various panels. With a finite

number of unknowns we can only satisfy the body boundary

condition at an equal number of discrete points.

To form the panels the body surface is divided into N

plane quadrilaterals with a constant aj source strength over

each quadrilateral for j - I,2,...N. The aj can then be moved

outside the integral in (68) yielding the following formula

for the perturbation potential

(P U 1 1 ) ffs G (P, Qj) dSj (70)

where Qj = (Qj, j, t) is the source point at the jth panel and

dSj is the surface area of the jth panel. The integral can
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then be obtained algebraically in terms of x,y,z and the four

corners E ,n1, r for 1 - 1,2,3,4. If (x,y,z) is far from the

panel, simplification can be used since the distance between

the source point and the observation point is essentially

constant over the whole panel. The body boundary conditions

are applied at one point in each quadrilateral to form N

linear equations in N unknowns which can then be solved for

aj. Once the source strengths aj are determined, the

velocities at the control points are computed from the formula

N
S= 1 + V Gij j (71)

where VG1j is the gradient of the total Green function. This

includes the effect of all three terms of (36) as well as both

sides of the body. The Bernoulli Equation is then used to

give the dynamic pressure

P,= 1 _u - u., 2 ) .(72)

2

The hydrostatic pressure is ignored.

In practice the Hess and Smith program works in a two-step

process. The first step is the quadrilateral generation.

Points are input which specify the body surface. The program

then forms quadrilaterals as flat surfaces and determines the

normal to that surface. It then finds the null point, this
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being the point where the source of the panel produces no

tangential velocity. Finally, it provides an output to check

the points. The second step yields the solution. The program

satisfies the body boundary condition at the null point of

each quadrilateral to form N equations. It then solves for

velocity and pressure at each null point for an inputted

inflow in x, y, and z. Additionally, it will also obtain

velocity and pressure at specified off the body. With the

pressure at each panel known, the drag, lift and bow-up

moments can be calculated by integrating over the appropriate

areas and distances.
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Ill. RESULTS

A. INTRODUCTION

To implement the Hess and Smith source panel method, a

FORTRAN program written by Doctors and Beck provided the

solution for all problem runs. This program computes the

hydrodynamic forces and moments for a body travelling at a

constant speed by the Neumann-Kelvin method. The key inputs

to the program, stored in a file IN.DAT, included the

following: water density, acceleration due to gravity, body

length, body beam, body depth, body speed, and the number of

points longitudinally, vertically and in the 0-integration.

Parameters could be varied for particular runs. Additionally,

the body surface was input with a data file of longitudinal

points, with a corresponding radius at each point. A

subroutine then calculated the y and z points from the radius

(R) using the following relations:

y = R sin(w(IZ - 1.0)/(NZ - 1.0)) (73)

and

z = R cos(,(IZ - 1.0)/(NZ - 1.0)) -H , (74)

where NZ is the total number of vertical points, IZ is the
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successive vertical point and H is the depth. This scheme

forms half of the body surface. The other half is formed by

reflecting the points about the vertical centerline in a

subroutine. The program then utilizes these points to

generate the quadrilateral panels. Thus, the Doctors and Beck

program provides the numerical solution to the Neumann-Kelvin

problem for numerous inputs.

The output results, stored in a file OUT.DAT, contained

appropriate body parameters as well as the three primary

coefficients. The program calculated the drag and lift forces

and bow-up moments by pressure summation over the body surface

panels. The moments are referenced to the body midpoint. For

the wave making problem, the drag coefficient, CD, and the

lift coefficient, CL, were made dimensionless by 1/2pU2S,

where S - wetted area,p - water density and U - body speed.

The bow-up moment coefficient,CM, was made dimensionless by

1/2pU2SL, where L - body length. For the incident waves

problem, the forces and moment were nondimensionalized using

1/2pA2c 2S and 1/2pA2W2SL, respectively. Here A - wave

amplitude and w - wave frequency. These nondimensional

coefficients served as the basis for evaluating the effects on

the body.

The model used to generate the input data points was a

submarine model, SUBOFF. Developed by the Defense Advanced

Research Projects Agency (DARPA), the model was originally

developed to evaluate various flow field predictions for an
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axisymmetric hull, both with and without appendages. It was

intended to compare predictions with model experimental data.

For all runs in this work, data for a bare hull (no

appendages) model were utilized. The key parameters of this

model are a length of 14.2917 ft, a 1.6667 ft midbody diameter

and a displacement of 24.692 ft 3 . To model the hull surface,

various station points (longitudinal points) were provided

along with their corresponding radius (fraction of midbody

diameter). These points are tabulated in Table I. These

station points were converted into corresponding x values,

with station 0.0000 at the bow (+L/2) and station 20.4167 at

the stern (-L/2). The radius values were used to produce the

y and z values. A drawing of the DARPA SUBOFF model is

included as Figure 2. The remaining sections of this chapter

detail the convergence, the wave making problem and the

incident waves problem results. The convergence section

explores the optimum number of vertical and 0 steps required

to converge to an acceptable solution. The wave making

problem section examines the depth dependence of each

coefficient over a range of speeds. Finally, the incident

waves section looks at two areas. The first is the effect on

the coefficients when the wave period is varied. The second

area shows the effect on the coefficients when the wave

frequency of encounter and the wave direction is altered.
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TABLE I. SUBOFF STATION POINTS AND RADII

STATION POINTS RADIUS FRACTION

0.0 0.00000

0.1 0.29058

0.2 0.39396

0.3 0.46600

0.4 0.52147

0.5 0.56627

0.6 0.60352

0.7 0.63514

1.0 0.70744

2.0 0.84713

3.0 0.94066

4.0 0.99282

7.7143 1.00000

10.0 1.00000

15.1429 1.00000

16.0 0.97598

17.0 0.81910

18.0 0.55025

19.0 0.26835

20.0 0.11724

20.1 0.11243

20.2 0.10074

20.3 0.07920

20.4 0.03178

20.4167 0.0000
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Figure 2- Drawing of the DARPA SUBOFF
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B. CONVERGENCE

The first step in producing accurate results requires a

consistent number of integration increments in the vertical

and 0-directions be used for each run. The longitudinal or x

increments (NX) are fixed by the station points of the DARPA

SUBOFF model at 25. A series of computer runs, using standard

input data, was conducted to determine the number of vertical

steps, NZ, and the number of 0-steps, NO. The input

conditions were standardized as follows:

* p - 1.94 slugs/ft 3

"* g - 32.2 ft/sec2

"* L - 14.3 ft

"* D - 1.67 ft

"* H - 0.15L - 2.15 ft

"* U - 10.0 ft/sec

"* NX- 25

The convergence for the 9-steps (NO) was first conducted.

The depth-to-submergence ratio, H/L, of 0.15 was chosen to

closely correspond to the value of 0.16 that Doctors and Beck

utilized in their study of a submerged spheroid. The spheroid

had a depth-to-length ratio of 0.2, whereas the SUBOFF has a

ratio of 0.12. Five runs were conducted, using a fixed value

of vertical steps, NZ - B. The runs varied NH from 4 to 20,

in increments of 4. Figures 3 to 5 clearly show a large

change in all three coefficients for values of NH below 8.
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Comparing the percent change between NO - 4 and NO - 8 for

each plot, the drag coefficient (D) varied by only 0.801, the

lift coefficient (CL) changed by 11.9t and the moment

coefficient (Cs) rose by 1.440. Above NO - 8, the plots show

a nearly constant value. Cý steadied at -2.76E-2, CL leveled

at 1.51E-3 and CD stabilized at 7.84E-3. Since a value of NO

- 16 yielded effectively convergent results for each

coefficient (to three significant figures), this value was

chosen as the standard for all subsequent runs. This

selection was important, as the computational time varied with

the square of NO.

To study the effects of the vertical steps, NZ, the value

of NO was fixed at 16. NZ was varied from 4 to 9 in steps of

one. Figures 6 through 8 show the convergence plots. In each

case, the plot has not leveled off at NZ - 9. However, the

slope in each plot has significantly decreased by NZ - 8 from

its initial value at NZ - 4. Drag slope dropped from 8.47E-4

to 1.14E-4, lift slope changed from 2.25E-4 to 3.03E-5, and

moment slope varied from -2.99E-4 to -3.11E-5. Between NZ -

8 and NZ - 9, the values of the drag, lift and moment

coefficients vary by only 1.45t, 2.00t, and 1.13t,

respectively. A value of NZ - 8 was chosen as the standard

for future runs based on this reasonable convergence.

Choosing more vertical points would not significantly improve

the solution. Additionally, it would also increase the

computational time since it is also proportional to the square
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of the number of panels. Also, the ratio of NX/NZ - 25/8 -

3.125 is smaller than the ratio of 4 used in the Doctors and

Beck study to achieve reasonable convergence. The smaller

ratio is better since the quadrilaterals that are formed will

have a more uniform shape than a body with a higher aspect

ratio.

Values of NO - 16 and NZ - 8 were selected as the

standards for subsequent runs. As this section detailed,

these values give good convergence results in reasonable

computational time. Using these values, the runs to determine

the wave making effects of the body, were performed.
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C. WAVE MAKING PROBLEM

Having established NO and NZ, the DARPA SUBOFF model is

input into the program to solve the wave making problem. The

drag, lift and moment coefficients are calculated as a

function of the body speed (Froude number) for varying depths.

The Froude number is

F= T (75)

where U is the body speed in ft/sec, g is the acceleration due

to gravity and L is the body length. The depths (H) were

chosen to be a fraction of the ship length, ranging from one

tenth to one half. The following depth ratios (H/L) were

chosen to give a good spread of values, with more runs

performed at shallower depths:

0 0.100

& 0.110

* 0.120

0 0.125

* 0.135

* 0.150

* 0.175

* 0.200

* 0.225
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* 0.250

* 0.300

* 0.400

• 0.500

Figures 9, 10, and 11, plot the drag, lift and moment

coefficients versus Froude number. The shallowest (0.1) and

the deepest (0.5) depth ratios are labelled, with each

successive curve being the sequential plot from the above

list. The Froude number is plotted from 0.18 to 0.75 which

corresponds to a range of 4 to 16 ft/sec. A spline technique

was utilized to smooth the curve.

The first plot, Figure 9, graphs the Drag Coefficient

versus Froude Number. The drag coefficient indicates the

force which is opposing the body in the longitudinal

direction. The oscillatory nature of the curves is readily

apparent especially at the shallower depths. At deeper

depths, the near surface effects are greatly diminished and it

exhibits small oscillations about a steady value of about

0.005. Two peaks are clearly seen at about F - 0.3 and F -

0.5. The magnitude of the peaks decreases and the peak shifts

to the right as depth is increased. With the exception of the

shallowest depth, the second peak (higher speeds) is of a

greater magnitude than the first peak. For the shallowest

depth, the ratio of the highest to lowest coefficient is about

3. This ratio drops off to just over 1 for the deepest depth.
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Also noteworthy is the observation that at F - 0.2 and F -

0.35, a minimum coefficient is reached, regardless of depth.

Clearly, the drag coefficient markedly decreases with depth,

since the interaction with the calm free surface exponentially

decays.

A similar oscillatory behavior is observed in Figure 10,

Lift Coefficient versus Froude Number. At shallow depths and

low speeds, a large lift is generated. The positive values of

lift represent an upwards, "sea-suction" force on the body.

It is this force which actual submarines must counter to

remain submerged at periscope depth. Two local maxima and two

local minima are observed. As with the drag coefficient, the

maxima shift to the higher speeds at deeper depths. However,

in contrast with the drag coefficient, the lift significantly

decreases with increasing speed and becomes negative (downward

force) at speeds above F - 0.55. For the shallowest depth,

the second local maximum is almost four times smaller than the

first local maximum. This correlates well to actual

submarines, in which it is easier to remain submerged at

higher speeds. Again, at the deepest depth, the oscillations

appear as a straight line using the scale in Figure 10. Its

lowest coefficient is 0.0462E-3 at the lowest speed, and it

reaches a maximum of 0.126E-3 at F - 0.466 (a ratio of 2.74).

So, the deepest depths do oscillate around a fairly constant
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value, but the effect on the body is negligible compared with

shallower depths. Thus, the shallowest depths and the lowest

speeds exert the greatest lift force on the body.

The Moment Coefficient versus Froude Number, Figure 11,

likewise displays an oscillatory characteristic. The negative

values for the coefficient indicate that a bow-down moment is

induced on the body, rotating the stern end towards the

surface. This, too, agrees with the motion of actual

submarines first broaching the surface at the stern. Two

local maxima and two local minima are present as with the

other two coefficients. Also, the shallowest depths produce

the largest fluctuation in the coefficient. However, the

magnitude of the coefficient greatly increases as the speed is

increased. The oscillations appear less distinct as the depth

increases, but the magnitude is clearly greater for higher

speeds. The ratio of the local maxima for the shallowest

depths is about three to one and drops to just over one for

the deepest depths. As seen with the other two coefficients,

the local maxima shift to the right (higher speeds) with

increasing depth. In other words, at shallower depths the

larger moment coefficient is produced at lower speeds. Also

of note is the greater moment coefficient magnitude generated

at lower speeds (below F - 0.35) as depth is increased above

0.15L. The moment coefficient causes the body to pitch down

for all speeds and depths.
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The wave making problem plots clearly display the results

of summing the pressure distributions around the body. All

three coefficients are oscillatory in nature. As the body is

placed in deeper depths, the coefficients become smaller in

magnitude. As speed is increased, drag and the bow-down

moment increase, while lift decreases. The results correspond

well to the operating experience of actual submarines at

shallow depths.
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D. INCIDENT WAVES PROBLEM

After examining the body wave making problem, the effect

of incident waves on the body is explored. The SUBOFF model

was input to provide the program the body shape with which the

incident waves interacted. Keeping only the second term of

equation (65) and substituting the encounter frequency from

equation (67) yielded the following pressure expression

1 2A2 e 2kz (76)
2 Pe A

This pressure distribution was summed over all the panels to

produce the drag, lift and moment coefficients. The drag and

lift coefficient were normalized by 1/2pw2A2S and the moment

coefficient was normalized by l/2pw2A2SL. For the various

runs in this section, the depth, H, the body speed, U, the

wave amplitude, A, the wave direction, 0, and the

nondimensional wavelength, X/L, were input to the program.

Amplitude, A, was fixed at 1.0 and X/L varied from 0.5 to 2.5

for all runs. The wavelength was directly obtained from the

nondimensional wavelength and the wavenumber, k - 2r/X,

followed. The deep water wave frequency w2 - k/g was then

obtained and used to calculate the encounter frequency,

we " ( W i2 /g)Ucos9, where 0 - 00 is following seas and 0 -

1800 is head seas. These parameters determined the pressure

distribution through (75). All of the plots in this section
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graph the coefficients versus the nondimensional wavelength,

X/L. Speeds are expressed as a Froude number, depth as a

fraction of overall length and the wave direction, 0, as an

angle in degrees. A positive lift coefficient represents an

upwards (sea suction) force and a positive moment coefficient

shows a bow-up moment. Three sets present the effects on the

three coefficients. The first set examines the effect of

depth as speed and wave direction are held constant. The next

set varies the wave direction at a constant speed and depth,

while the last set changes the body speed with depth and wave

direction being fixed.

The first incident wave set looks at the exponential

nature of the depth term for a given set of conditions. Hull

speed was fixed at F - 0.2, and 0 set at 900 (beam seas).

This removed the effect of the body speed from the frequency

of encounter. Depth was then varied between a tenth and a

half of the overall body length. Figures 12 through 14

present the Drag, Lift and Moment Coefficients versus

Nondimensional Wavelength, respectively. In each plot the

coefficients rapidly decay as the depth is increased. The

coefficients are negligible at a depth greater than 0.5X (0.5L

times 1.0X/L). This validates the statement made in the

problem formulation section that there is a negligible motion

beneath a depth of O.SX. As the wavelength increases, the

coefficients also increase at the deepest depths, showing that

the longer waves have a larger effect on the body. However,
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at the shallowest depth the coefficients decrease with

increasing wavelength. Both the lift and moment coefficients

peak at about 1.2X/L then steadily drop as the waves lengthen.

Overall, these plots clearly show the exponential decay of the

coefficients with depth.

Figures 15 to 17 show the effects on the coefficients when

the wave direction is varied. For these runs, depth was fixed

at one tenth of overall length and body speed was set at F -

0.2. Wave direction was varied from 00 (following seas) to

1800 (head seas) in 450 increments and are labelled as such.

In each plot, the 0 - 090 corresponds to the H - 0.1L curves

of the variable depth plots. In the Drag Coefficient versus

Nondimensional Wavelength plot (Figure 15), maximum drag is

produced with head seas and steadily drops off as the seas

move aft. The following seas are an order of magnitude

smaller than the head seas. As the wavelength increases, the

drag drops as the waves appear longer to the body. Figures 16

and 17, the Lift and Moment Coefficients versus Nondimensional

Wavelength, show identical trends to one another. For head

seas, both plots peak around a wavelength of one then steadily

decrease as the wavelength increases. The head seas produce

over twice the magnitude of the beam seas. This correlates

well to at sea experience of being able to better maintain

depth with beam seas than with head seas. For the following

seas, the lift and moment coefficients both slowly increase
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with wavelength, but lie significantly below the beam seas

curve. Thus, head seas produce the largest coefficients and

following seas yield the smallest coefficients.

Next, the effects on varying the body speed were examined.

Figures 18 to 20 plot the Drag, Lift and Moment Coefficients

versus Nondimensional Wavelength. In these runs, depth was

fixed at one tenth of overall length and 0 set to 1800 (head

seas). Speed was varied from F - 0.0 to 0.8 in 0.2

increments. The F - 0.2 curves correspond to the 0 - 180

curves on the variable wave direction plots (Figures 15 to

17). Also, the F - 0.0 curves correspond to the H - 0.1L

curves on the variable depth plots (Figures 12 to 14), since

the effect of hull speed was taken out of these by using beam

seas. Each plot clearly shows that the greater speeds produce

the largest coefficients. From the lowest to the highest

speeds, the coefficients change by an order of magnitude.

Additionally, as the wavelength is raised, each of the

coefficients slowly decays in magnitude. Thus, in examining

the incident waves effects alone, a higher hull speed or a

shorter wavelength would cause the most drag, the greatest

lift and the largest bow-down moment.

The results of the incident wave runs clearly showed the

effects on the SUBOFF model for various input conditions. The

coefficients all dropped exponentially with depth as was

predicted. Below 0.SX, the incident waves are negligible.

The head seas produced the greatest coefficients at all
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wavelengths. Seas aft of the beam are significantly less

important. The higher hull speeds yielded the largest

coefficients at each wavelength. The lowest speed runs were

equivalent to the beam seas plots.
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Figure 18: Incident Wave: Drag Coefficient versus
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Figure 19: Incident Wave: Lift Coefficient versus
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B. SUMMARY

The results chapter constitutes the major part of this

work. Using the DARPA SUBOFF model of a bare submarine hull,

the hydrodynamic forces and moments produced from various

sources was examined. A set of convergence runs established

the number of vertical and 0-integration points at 8 and 16,

respectively. These were utilized for the subsequent wave-

making runs and the incident wave runs.

The wave-making runs produced oscillatory plots for each

coefficient. The drag coefficient represented the

longitudinal force opposing the hull's motion and this

steadily declined with increasing depth. The lift coefficient

showed the upwards, sea-suction force present on the body. At

the shallowest depths and the slowest speeds, these sea-

suction forces were the greatest. The moment coefficient

explained how much the body would pitch up or down. As speed

increased, the bow-down moment increased. Of these effects,

the lift force has the greatest bearing on a submarine

maintaining depth. Thus, using the greatest speed is the most

advantageous to prevent broaching the submarine.

Finally, the incident wave runs showed the effects on the

body from incident waves on an otherwise calm free surface.

The incident waves are exponentially attenuated as depth is

increased and at depths greater than half the wavelength, the

effects are negligible. Head seas produce a larger lift and
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moment than do beam or following seas, making it more

difficult to maintain depth when driving a submarine into the

seas. Upon examining the role of hull speed, it was found

that the greatest speeds produced the most drag, the highest

lift and the largest moment. Thus, the higher hull speed

would increase the severity of the incident waves' lift.

Combining the wave making and incident wave results yields

the total response on the hull. The total drag on the body

reflects the resistance to the body's forward motion. The

wave making runs produced positive (opposing) forces on the

body while the incident wave runs yielded very small negative

(aiding) forces on the body. The drags for each were

calculated to make realistic comparisons. For the wave making

runs the drag (DwM) is

Dw= CpU2S , (77)

and for the incident waves the drag (Diw) is

Diw= CDPCl2A2S . (78)

For the low speeds (F - 0.2) with head seas, DwM - 0.765 lbf

and DIw - -0.00928 lbf. The two forces are of opposite signs,

but the magnitude of the wave making drag greatly outweighs

the incident wave drag. A similar effect is also seen at
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higher speeds (F - 0.7) with DwX - 1.61 lbf and Dxw - -0.0325

lbf. Thus, the majority of the drag on the submerged body is

from wave making effects.

The total moment produced on the body directly affects the

ability of the submarine to keep the stern (mainly) or bow

from breaking the free surface. The wave making runs produced

negative (bow-down) moments and the incident waves yielded

positive (bow-up) moments. The moments for each run were

calculated to make relevant comparisons. For the wave making

runs the moment (M%) is

M.. =C7 4pU2SL (79)

and for the incident waves the moment (Miw) is

MIW =CM1 pW2A2SL . (80)

For the low speeds (F - 0.2) with head seas, MWM - -1.44 ft-

lbf and MIw - 2.10 ft-lbf. This shows that the two moments

are roughly equivalent and of opposite sign, thus cancelling

out one another. As the seas move aft, MIw drops to 0.93 ft-

lbf off the beam and falls to 0.22 ft-lbf for following seas.

For these cases, a total bow-down moment is produced, forcing

the stern up to the surface. As speed is raised to F - 0.7,

all the moments increase, except for the beam incident waves
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which are independent of speed. Mwx rises dramatically to -

123.4 ft-lbf while MIW only increases to 7.30 ft-lbf for head

seas and to 0.53 ft-lbf for following seas. Thus, a much

greater bow-down moment is produced at higher speeds,

resulting in more submarine control surfaces and variable

ballast being needed to prevent the stern from breaking the

free surface.

Even of greater importance to submarine depth control is

the effect of the combined lift on the body. This is the

primary item of interest since this upward force must be

overcome to prevent the entire body from broaching the free

surface. A combination of ship's speed, control surfaces and

variable ballast are utilized to counter the lift force. In

the wave making runs, higher ship speeds produced less lift,

while greater speeds yielded more lift in the incident wave

runs. To make the results meaningful, the lift forces in each

case must be compared. For the wave making runs, the lift

(Lw) is

L 1 Lp2
W =CL.pU2S (81)

and for the incident wave runs the lift (LIw) is

LIW CL1pW2A2S . (82)

For the case of head seas with body speed being F - 0.2 and
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nondimensional wavelength of one, Liw - 27.84 lbf and LWM =

3.02 lbf. When the seas come from the beam, Liw - 12.37 lbf

and when the seas are following, LIw - 3.09 lbf. In all

cases, both lifts are positive and the body is drawn to the

surface. When speed is increased to F - 0.7 in head seas, LIN

significantly increases to 92.80 lbf, but Lw changes sign and

is of the same order of magnitude, -4.93 lbf. The upwards

force from the incident head waves will greatly overcome the

negative lift generated by the body. But, as the sea

direction moves aft, the lift generated by the incident waves

drastically drops. For beam seas, Liw remains constant

(independent of speed) and for following seas LIW rises to

6.87 lbf. Thus, sea direction plays a major role in

determining the lift which the submarine must counteract.
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IV. PARAMETRIC STUDIES

A. INTRODUCTION

The previous chapter detailed the results of the wave

making problem and the incident waves problem for a given

body, namely the DARPA SUBOFF model. This chapter explores

the effects of changing the body size and shape. The body is

divided into three sections, with each section being defined

by a set of coefficients. By varying the overall length in

one case and by changing the maximum diameter in a second

case, the effects on the drag, lift and moment coefficients

are examined.

The body of revolution hull form was selected to model a

submarine since it is described by simple geometric forms

which are developed from elementary mathematical equations.

Essentially, all cross sections of the hull are circular. The

development of this approach is articulated in an article on

submarine design concepts (Jackson, 1992). The hull form is

composed of three sections. The forward end called the

entrance, the parallel middle body and the after end called

the run. The entrance is a portion of a parabola of

revolution with length, Lf, of 2.4 diameters. The run is a

portion of an ellipsoid of revolution with length, La, of 3.6
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diameters. The parallel middle body is a cylinder of maximum

diameter, D, with length, Lpu.The sum of La, Lf and LpMB is

the overall length, L.

If one were to use equations for true ellipsoids and

parabolas, the entrance and run would be too fine for a modern

submarine hull form. The body size is increased by using

large exponents (nf and na) in the equations below.

1
y D-•C - (Xf . (3Yf~[ )Lf (3

Ya -P D1 - ( .a)"] (84)

2La

Figure 21 is a drawing of the hull shape which details the

various lengths. Here xf and xa are the offsets from the

maximum diameter, and yf and Ya are the hull radii at their

respective offsets.

- .--- L.: ~----Lf--- 1
La L -

Figure 21: Submarine Hull Shape
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Using these parameters, the total volume of the body can be

calculated as the sum of the volumes of the entrance, Vf, the

run, Va, and the parallel middle body, V,:

V, - W (D)2 [Cpf* 2 .4*D] (85)

Va= 2 (86)

V. W (DP)2 [Cpa*3.6*D]
D2

V. (-P) [L - 6*D] (87)
2

where Cf and Cpa are the prismatic coefficients for the

entrance and run, respectively. Substituting yf and Ya for

D/2 and integrating over the length of each section yields

1 2

Cp (1- (x) 'V' If (88)

C (l - (x 1 )"-) 2 dXj (89)
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where x - xf/Lf and x, - Xa/La. Adding the three volumes and

rearranging results in

V n +D3  L"M .4Cpf] (90)

In performing the parametric studies, the volume

(displacement) was kept constant and set equal to the

SUBOFF's displacement. The SUBOFF model was slightly

different than the bodies of revolution described above, in

that the entrance was twice the diameter and the run was 2.18

times the diameter. Yet, the shape of each SUBOFF section was

certainly circular. In the first study, the displacement and

the diameter of the body were fixed and the length was varied

through the use of different exponents for the entrance and

the run. In the second study, the displacement and the

overall length were fixed and the diameter changed with

various exponents. In both studies, wave making and incident

wave runs were conducted.

B. EFFECTS OF LENGTH

The first parametric study examined the effects on the

drag, lift and bow-up moment coefficients as the overall

length was varied. The displacement was fixed at 24.692 ft 3

and the maximum diameter held at 1.667 ft. All parameters

remained the same, except that overall length varied in each

run and depth was set at one tenth of the length. For each
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run, equal values of the exponents na and nf were chosen.

From these exponents, the prismatic coefficients were obtained

from (88) and (89). Then, from (90), the length of the

parallel middle body, L.., was found which set the overall

length, L. Table II summarizes the exponents, prismatic

coefficients and overall lengths utilized in this parametric

study. As the exponent increased in value, the entrance and

the run became wider and rounder; i.e., more cylindrical

throughout. Also, the overall body length became shorter.

The longitudinal stations and their respective radii were

calculated and converted into the correct input format. The

y and z values were calculated as in previous runs. As

before, the computer program output the three coefficients

which are shown in Figures 22 to 33. The graphs plot the

drag, lift, and moment coefficients versus speed (Froude

number) for the wave making runs and plot the coefficients

versus nondimensional wavelength for the incident wave runs.

In each plot, the na - nf - 2.0 and the na - nf - 4.0 curves

are labelled, with the other four curves lying sequentially

between these two labelled curves. Each plot will be

separately detailed.
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TABLE I. PRISMATIC COEFFICIENTS AND OVERALL LENGTH

na-nf a Cpf L

2.0 0.5333 0.6667 15.5

2.5 0.5952 0.7500 14.7

3.0 0.6429 0.8061 14.2

3.5 0.6806 0.8455 13.9

4.0 0.7111 0.8740 13.6

4.5 0.7366 0.8944 13.3

Figures 22 to 24 detail the wave making runs. The Wave

Making Drag Coefficient versus Froude Number plot (Figure 22),

shows an oscillatory character. As the exponents are raised,

the curves show larger fluctuations in amplitude.

Additionally, the local minima and maxima shift to the right

as the exponents increase. The general shape of each curve is

identical, with each curve slowly decreasing in magnitude

above about F - 0.5. Overall, the magnitude increases by a

factor of 4 from na - nf - 2.0 to n. - nf - 4.5. The relative

order of magnitude and the general sinusoidal shape is similar

to the drag coefficient for the SUBOFF model. Thus, as the

body becomes shorter and rounder, the drag force increases.
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The Wave Making Lift Coefficient versus Froude Number plot

(Figure 23) also shows an oscillatory character. Two local

maxima are evident, with the second peak being of greater

magnitude than the first. As the exponents are raised, the

lift coefficient is increased. Also, the speed at the peak is

shifted slightly to the right. Of special note is the

decrease in magnitude above F - 0.43, with a change in sign

above F - 0.56. As seen in the SUBOFF model, increasing speed

above this point results in a downward, vice an upward, sea-

suction force. Overall, the shorter, rounder hulls experience

a greater lift force (almost double) than do the longer,

thinner hulls.

Likewise, the Wave Making Moment Coefficient versus Froude

Number plot (Figure 24) is oscillatory in nature. With the

exception of a few low speed points, all values are negative,

indicating a bow-down or stern-up moment. The magnitude of

the coefficient increases as speed is raised to about F - 0.5

indicating that a higher moment is produced at higher speeds.

But above F - 0.5, the magnitude slowly drops. The shorter,

rounder hulls produce a greater bow-down moment than do the

longer, thinner hulls. Thus, it is easier to keep the stern

submerged with a longer, thinner model.

Figures 25 to 27 detail the incident wave runs. The

Incident Wave Drag Coefficient versus Nondimensional

Wavelength plot (Figure 25) shows that the magnitude decreases

as the wavelength increases. Doubling the wavelength drops

80



the drag coefficient by a factor of two. Thus, as the waves

become longer, the drag on the body is reduced. For the two

lowest exponents, the drag is a positive value (opposing

force) while the larger exponents are negative (aiding force).

The more streamlined bodies (lower exponents) will experience

resistance to their motion while the shorter, rounder bodies

will actually be pushed in the longitudinal direction.

Figure 26 details the Incident Wave Lift Coefficient

versus Nondimensional Wavelength plot. The lift coefficient

is positive throughout (sea-suction force), peaks at a

wavelength of about one, then linearly decreases. As the

exponent is increased, the lift coefficient rises through all

wavelengths. However, the change is relatively small as the

lift coefficient varies only about 25 percent from the lowest

to highest exponent. Thus, the shorter, rounder bodies

experience a somewhat greater lift force.

Finally, the Incident Wave Moment Coefficient versus

Nondimensional Wavelength plot (Figure 27) displays a similar

shape to the lift coefficient plot. The moment coefficients

are positive, indicating a bow-up moment. As the exponent is

raised, the moment coefficient is increased. About a 20

percent increase is noted from the lowest to the highest

exponent. The four highest coefficients form a common curve

above a wavelength of 1.5. Thus, the shorter, rounder body

will feel a greater bow-up moment.
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Varying the length while maintaining the displacement and

maximum diameter constant result in changes to each of the

three coefficients. Combining the effects of the wave making

and incident wave runs, the following observations are made

for the shorter, rounder bodies (higher exponents). They

produce greater drag, which is due mainly to the wave making

effects. The incident waves make these bodies more

susceptible to sea-suction forces. Also, the largest bow-down

moments are presented to these bodies. The second parametric

study examines the role of a varying diameter.

82



PARAME-i-IC: DPAG vs P'-RUDE NUMBER (VAPIABLE LSENG 7H)
0.025

4.5

0.02ý-/

z/

< %J.0151

<0.01", I.0

0.2 0.3 0.4 0.5 0.5 0.7
FRCUCE NUMBER

Figure 22: Parametric Study of Wave Making: Drag
Coefficient versus Froude Number (Variable
Length)
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Figure 23: Parametric Study of Wave Making: Lift
Coefficient versus Froude Number (Variable
Length)
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Figu~re 24: Parametric Study of Wave Making: Moment
Coefficient versus Froude Number (Variable
Length)
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Figure 25: Parametric Study of Incident Waves: Drag
Coefficient versus Nondimensional Wavelength
(Variable Length)
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Figure 27: Parametric Study of Incident Waves: Moment
Coefficient versus Nondimensional wavelength
(Variable Length)
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C. EFFECTS OF DIAMETER

In the second parametric study, the displacement again

remains constant at 24.692 ft 3 , and the overall length and

depth are fixed at 14.3 ft and 1.43 ft, respectively. In each

run, the diameter is the variable and the effects on the drag,

lift and bow-up moments are examined. The diameter for each

is obtained by finding the roots of (90) for D. Again the

values of exponents determine the prismatic coefficients (see

Table II). The root closest to 1.667 (the original diameter)

is chosen for the body diameter. Table III presents the

exponents and their corresponding diameters.

TABLE I1I. EXPONENTS AND CORRESPONDING DIAMETERS

n. - nf DIAMETER (ft)

2.0 1.78

2.5 1.71

3.0 1.66

3.5 1.63

4.0 1.61

4.5 1.59
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As the Table III clearly shows, the larger exponents result in

smaller diameters to maintain the same displacement. As the

ends become more rounded, the maximum diameter must be

reduced. The results generated by the computer program are

shown in Figures 28 to 30 for the wave making runs and in

Figures 31 to 33 for the incident wave runs.

An oscillatory set of curves is obtained for the Wave

Making Drag Coefficient versus Froude Number plot (Figure 28).

Two peaks are observed, with the peaks shifting to higher

speeds as the exponents increase. As the exponents are

raised, the magnitude of the drag coefficient increases, and

is more than doubled from the lowest to the highest exponent.

As the body becomes rounder on the ends and thinner in the

middle, the drag force produced on the body increases.

Figure 29 details the Wave Making Lift Coefficient versus

Froude Number for each exponent. The oscillatory nature is

again apparent, but the shapes of each curve shows larger

variations at lower speeds. For increasing exponents the

first peak shifts slightly to the right and the magnitude

increases while the second peak shifts to higher speeds and

the magnitude decreases. As in the varying length study,

above F - 0.55, all lift coefficients drop below zero. At

lower speeds, the body produces an upward force and at higher

speeds a downward force is produced. The rounder, thinner

(greater exponents) body produces the greatest lift only in a
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small region about F - 0.3. In the other lower speed regions

(less than F - 0.55), the less rounded, fatter (lower

exponents) body produces the higher sea-suction force. Thus,

to reduce the effects of sea-suction forces, a rounder,

thinner body would be preferable. Once again, higher speeds

mitigate the sea-suction forces.

The last plot (Figure 30) shows the Wave Making Moment

Coefficient versus Froude Number for various exponents. Once

again, the oscillatory nature and the negative (bow-down)

moment coefficients are present. A tighter set of curves is

obtained than for the variable length case. At lower speeds

(less than F - 0.35), the higher exponents yield the greatest

coefficient magnitudes, while the higher speeds (F - 0.35 to

F - 0.6) result in lower coefficient magnitudes. The less

rounded, fatter bodies result in almost no moment at low

speeds, but produce a larger moment as speed was increased.

The rounded, thinner bodies produce a more uniform moment

throughout the range of speeds encountered. Overall, every

body form experiences a bow-down moment.

Figures 31 to 33 detail the incident wave runs as the

diameter is varied. The Incident Wave Drag Coefficient versus

Nondimensional Wavelength plot (Figure 31) shows a decreasing

magnitude coefficient throughout all wavelengths. Similar to

the varying length case, the the lowest exponents yield

positive coefficients, while the highest exponents produce

negative drag coefficients. As the body becomes rounded and
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narrow (higher exponent), the incident waves actually aid the

body's motion instead of opposing it. Still, the effects are

very small when compared to the wave making case.

Figure 32 details the Incident Wave Lift Coefficient

versus Nondimensional Wavelength plot. A peak near a

wavelength of one is seen with a steady decline thereafter.

As the exponents increase, theposition lift decreases slightly

(about five percent). This shows that a thinner, rounder body

will experience a smaller sea-suction force than a wider,

streamlined body.

The last plot, Figure 33, displays the Incident Wave

Moment Coefficient versus Nondimensional Wavelength. A

similar shape to the varying length plot is observed. As the

exponents increase from lowest to highest, the positive (bow-

up) moment decreases by about 40 percent. As with the lift

coefficient, the thinner, rounder body will feel a smaller

bow-up moment than a wider, streamlined body.

In summary, changing the maximum diameter and the body

shape for a given length and displacement modify each of the

three coefficients. The less wider, streamlined (lower

exponent) body produces the lowest drag, the greatest sea-

suction force, and the most variable bow-down moment.
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Figure 28: Parametric Study of Wave Making: Drag
Coefficient versus Froude Number (Variable
Diameter)
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Figure 29: Parametric Study of Wave Making: Lift
Coefficient versus Froude Number (Variable
Diameter)
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Figuire 30: Parametric Study of Wave Making: Moment
Coefficient versus Froude Number (Variable
Diameter)
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Figure 31: Parametric Study of Incident Waves: Drag
Coefficient versus Nondimensional Wavelength
(Variable Diameter)
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Figure 32: Parametric Study of Incident Waves: Lift
Coefficient versus Nondimensional Wavelength
(Variable Diameter)
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V. CONCLUSIONS AND RECOMMENDATIONS

This work examined two significant free surface effects in

a submerged body. The waves produced by the moving body

interact with the free surface, and in turn, produce forces

and a moment on the body. Secondly, the incident waves on the

otherwise calm, free surface also produce its own forces and

moment on the body. The combination of these two effects

produce a total response on the body. The wave making effects

were the major contributor to the body drag, causing a force

which resisted the body's longitudinal motion. The incident

waves produced the largest upwards lift force on the body,

pulling the body to the free surface. A combination of the

wave making and incident wave effects were responsible for the

total bow-down moment on the body. Understanding these

effects will aid the designer in optimizing future submarine

designs and will assist submarine crews in effectively

maintaining depth control at periscope depth. On the design

side, the data from this work could be used directly in the

simulation design based process or in design of an automatic

depth control system. On the operational side, the data could

be input into training simulators to better model the

submarine operating at periscope depth. Additionally, the
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results could be incorporated into the existing Ship's Fleet

Mission Program Library (SFMPL) to aid the crew in trimming

the submarine prior to proceeding to periscope depth.

To further improve the knowledge of free surface effects

on submerged bodies, the following reconmmendations are

proposed. First, the viscous effects in the body's boundary

layer can be modelled to yield additional, significant forces

and moments. These effects, especially flow separation from

the body and its appendages would greatly add to the potential

flow results discussed in this work. Secondly, the effects

from the bottom or from other nearby sources (proximity

effects) would likewise increase the accuracy of the resulting

forces and moments. Finally, the effects of incident wave

diffraction (which was neglected in this work) would produce

additional forces and moments. Also, modelling the seaway as

a random wave vice a sinusoidal wave would produce a more

realistic seawave. These recommendations would serve to

enhance the results presented in this work.
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